Category:Definitions/Implication
Jump to navigation
Jump to search
This category contains definitions related to Implication.
Related results can be found in Category:Implication.
The conditional or implication is a binary connective:
- $p \implies q$
defined as:
- If $p$ is true, then $q$ is true.
This is known as a conditional statement.
A conditional statement is also known as a conditional proposition or just a conditional.
$p \implies q$ is voiced:
- if $p$ then $q$
or:
- $p$ implies $q$
Pages in category "Definitions/Implication"
The following 40 pages are in this category, out of 40 total.
C
- Definition:Causal Implication
- Definition:Conditional
- Definition:Conditional/Antecedent
- Definition:Conditional/Boolean Interpretation
- Definition:Conditional/Consequent
- Definition:Conditional/Formal Implication
- Definition:Conditional/Language of Conditional
- Definition:Conditional/Language of Conditional/Strong
- Definition:Conditional/Language of Conditional/Weak
- Definition:Conditional/Necessary Condition
- Definition:Conditional/Notational Variants
- Definition:Conditional/Notational Variants/Sign of Illation
- Definition:Conditional/Semantics of Conditional
- Definition:Conditional/Subimplicant
- Definition:Conditional/Sufficient Condition
- Definition:Conditional/Superimplicant
- Definition:Conditional/Truth Function
- Definition:Conditional/Truth Table
- Definition:Conditional/Truth Table/Matrix Form
- Definition:Conditional/Truth Table/Number
- Definition:Conjugate Statements
- Definition:Consequent
- Definition:Contrapositive Statement
- Definition:Converse Statement