Category:Definitions/Index of Subgroups
Jump to navigation
Jump to search
This category contains definitions related to Index of Subgroups.
Related results can be found in Category:Index of Subgroups.
Let $G$ be a group.
Let $H$ be a subgroup of $G$.
The index of $H$ (in $G$), denoted $\index G H$, is the cardinality of the left (or right) coset space $G / H$.
Finite Index
If $G / H$ is a finite set, then $\index G H$ is finite, and $H$ is of finite index in $G$.
Infinite Index
If $G / H$ is an infinite set, then $\index G H$ is infinite, and $H$ is of infinite index in $G$.
Pages in category "Definitions/Index of Subgroups"
The following 5 pages are in this category, out of 5 total.