Category:Definitions/Inverse Mappings
Jump to navigation
Jump to search
This category contains definitions related to Inverse Mappings.
Related results can be found in Category:Inverse Mappings.
Let $f: S \to T$ be a mapping.
Let $f^{-1} \subseteq T \times S$ be the inverse of $f$:
- $f^{-1} := \set {\tuple {t, s}: \map f s = t}$
Let $f^{-1}$ itself be a mapping:
- $\forall y \in T: \tuple {y, x_1} \in f^{-1} \land \tuple {y, x_2} \in f^{-1} \implies x_1 = x_2$
and
- $\forall y \in T: \exists x \in S: \tuple {y, x} \in f$
Then $f^{-1}$ is called the inverse mapping of $f$.
Pages in category "Definitions/Inverse Mappings"
The following 14 pages are in this category, out of 14 total.