Category:Definitions/Linear Combination of Subsets of Vector Spaces
Jump to navigation
Jump to search
This category contains definitions related to Linear Combination of Subsets of Vector Spaces.
Related results can be found in Category:Linear Combination of Subsets of Vector Spaces.
Let $K$ be a field.
Let $X$ be a vector space over $K$.
Dilation
Let $E$ be a subset of $X$ and let $\lambda \in K$.
We define the dilation of $E$ by $\lambda$, written $\lambda E$, by:
- $\lambda E = \set {\lambda x : x \in E}$
Binary Case
Let $A$ and $B$ be subsets of $X$ and $\lambda, \mu \in K$.
We define the linear combination $\lambda A + \mu B$ by:
- $\lambda A + \mu B = \set {\lambda a + \mu b : a \in A, \, b \in B}$
Finite Case
Let $n \in \N$.
Let $E_1, E_2, \ldots, E_n$ be subsets of $X$ and $\lambda_1, \lambda_2, \ldots, \lambda_n \in K$.
We define the linear combination $\ds \sum_{i \mathop = 1}^n \lambda_i E_i$ by:
- $\ds \sum_{i \mathop = 1}^n \lambda_i E_i = \set {\sum_{i \mathop = 1}^n \lambda_i x_i : x_i \in E_i \text { for each } i \in \set {1, 2, \ldots, n} }$
Pages in category "Definitions/Linear Combination of Subsets of Vector Spaces"
The following 4 pages are in this category, out of 4 total.