Category:Definitions/Matrix Similarity

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Matrix Similarity.
Related results can be found in Category:Matrix Similarity.

Let $R$ be a ring with unity.

Let $n \in \N_{>0}$ be a natural number.

Let $\mathbf A, \mathbf B$ be square matrices of order $n$ over $R$.

Definition 1

Let there exist an invertible square matrix $\mathbf P$ of order $n$ over $R$ such that $\mathbf B = \mathbf P^{-1} \mathbf A \mathbf P$.

Then $\mathbf A$ and $\mathbf B$ are similar.

Definition 2

$\mathbf A$ and $\mathbf B$ are similar if and only if they are the relative matrices, to (possibly) different ordered bases, of the same linear operator.

Pages in category "Definitions/Matrix Similarity"

The following 3 pages are in this category, out of 3 total.