Category:Definitions/Preimages
Jump to navigation
Jump to search
This category contains definitions related to Preimage in the context of Set Theory.
Related results can be found in Category:Preimages.
Let $Y \subseteq T$.
The preimage of $Y$ under $f$ is defined as:
- $f^{-1} \sqbrk Y := \set {s \in S: \exists t \in Y: \map f s = t}$
That is, the preimage of $Y$ under $f$ is the image of $Y$ under $f^{-1}$, where $f^{-1}$ can be considered as a relation.
Also see
Subcategories
This category has the following 2 subcategories, out of 2 total.
Pages in category "Definitions/Preimages"
The following 22 pages are in this category, out of 22 total.
P
- Definition:Preimage
- Definition:Preimage of Element under Mapping
- Definition:Preimage of Element under Mapping/Also known as
- Definition:Preimage of Element under Relation
- Definition:Preimage of Mapping
- Definition:Preimage of Relation
- Definition:Preimage of Subset under Mapping
- Definition:Preimage of Subset under Relation
- Definition:Preimage Set
- Definition:Preimage Set of Mapping
- Definition:Preimage under Mapping
- Definition:Preimage under Relation
- Definition:Preimage/Mapping
- Definition:Preimage/Mapping/Element
- Definition:Preimage/Mapping/Mapping
- Definition:Preimage/Mapping/Subclass
- Definition:Preimage/Relation
- Definition:Preimage/Relation/Element
- Definition:Preimage/Relation/Relation
- Definition:Preimage/Relation/Subset