Category:Definitions/Probability Distributions

From ProofWiki
Jump to navigation Jump to search

This category contains definitions related to Probability Distributions.
Related results can be found in Category:Probability Distributions.


General Definition

Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.

Let $\struct {S, \Sigma'}$ be a measurable space.

Let $X$ be a random variable on $\tuple {\Omega, \Sigma, \Pr}$ taking values in $\struct {S, \Sigma'}$.


Then the probability distribution of $X$, written $P_X$, is the pushforward $X_* \Pr$ of $\Pr$, under $X$, on $\Sigma'$.

That is:

\(\ds \map {P_X} B\) \(=\) \(\ds \map \Pr {X^{-1} \sqbrk B}\)
\(\ds \) \(=\) \(\ds \map \Pr {\set {\omega \in \Omega : \map X \omega \in B} }\) Definition of Preimage of Mapping
\(\ds \) \(=\) \(\ds \map \Pr {X \in B}\)

for each $B \in \Sigma'$, where $X^{-1} \sqbrk B$ denotes the pre-image of $B$ under $X$.


Real-Valued Random Variable

Let $\tuple {\Omega, \Sigma, \Pr}$ be a probability space.

Let $X$ be a real-valued random variable on $\tuple {\Omega, \Sigma, \Pr}$.


Then the probability distribution of $X$, written $P_X$, is the pushforward $X_* \Pr$ of $\Pr$, under $X$, on $\tuple {\R, \map \BB \R}$, where $\map \BB \R$ denotes the Borel $\sigma$-algebra on $\R$.

That is:

\(\ds \map {P_X} B\) \(=\) \(\ds \map \Pr {X^{-1} \sqbrk B}\)
\(\ds \) \(=\) \(\ds \map \Pr {\set {\omega \in \Omega : \map X \omega \in B} }\) Definition of Preimage of Mapping
\(\ds \) \(=\) \(\ds \map \Pr {X \in B}\)

for each $B \in \map \BB \R$, where $X^{-1} \sqbrk B$ denotes the pre-image of $B$ under $X$.

Subcategories

This category has only the following subcategory.

Pages in category "Definitions/Probability Distributions"

The following 3 pages are in this category, out of 3 total.