Category:Definitions/Step Functions
Jump to navigation
Jump to search
This category contains definitions related to Step Functions.
Related results can be found in Category:Step Functions.
A real function $f: \R \to \R$ is a step function if and only if it can be expressed as a finite linear combination of the form:
- $\map f x = \lambda_1 \chi_{\mathbb I_1} + \lambda_2 \chi_{\mathbb I_2} + \cdots + \lambda_n \chi_{\mathbb I_n}$
where:
- $\mathbb I_1, \mathbb I_2, \ldots, \mathbb I_n$ are open intervals, where these intervals partition $\R$ (except for the endpoints)
- $\chi_{\mathbb I_1}, \chi_{\mathbb I_2}, \ldots, \chi_{\mathbb I_n}$ are characteristic functions of $\mathbb I_1, \mathbb I_2, \ldots, \mathbb I_n$.
Subcategories
This category has only the following subcategory.
H
Pages in category "Definitions/Step Functions"
The following 3 pages are in this category, out of 3 total.