Category:Definitions/Well-Orderings
Jump to navigation
Jump to search
This category contains definitions related to Well-Orderings.
Related results can be found in Category:Well-Orderings.
The ordering $\preceq$ is a well-ordering on $S$ if and only if every non-empty subset of $S$ has a smallest element under $\preceq$:
- $\forall T \subseteq S, T \ne \O: \exists a \in T: \forall x \in T: a \preceq x$
Subcategories
This category has the following 2 subcategories, out of 2 total.
Pages in category "Definitions/Well-Orderings"
The following 28 pages are in this category, out of 28 total.
O
S
- Definition:Slowly Well-Ordered Class under Subset Relation
- Definition:Strict Strong Well-Ordering
- Definition:Strict Well-Ordering
- Definition:Strict Well-Ordering/Definition 1
- Definition:Strict Well-Ordering/Definition 2
- Definition:Strictly Well-Ordered Set
- Definition:Strictly Well-Ordered Set/Definition 1
- Definition:Strictly Well-Ordered Set/Definition 2
W
- Definition:Well-Orderable Class
- Definition:Well-Orderable Set
- Definition:Well-Orderable Set/Class Theory
- Definition:Well-Ordered Class
- Definition:Well-Ordered Class under Subset Relation
- Definition:Well-Ordered Integral Domain
- Definition:Well-Ordered Set
- Definition:Well-Ordered Set/Also known as
- Definition:Well-Ordering
- Definition:Well-Ordering (Class Theory)
- Definition:Well-Ordering/Also defined as
- Definition:Well-Ordering/Class Theory
- Definition:Well-Ordering/Definition 1
- Definition:Well-Ordering/Definition 2