Category:Elementary Column Operations

From ProofWiki
Jump to navigation Jump to search

This category contains results about Elementary Column Operations.

Let $\mathbf A = \sqbrk a_{m n}$ be an $m \times n$ matrix over a field $K$.

The elementary column operations on $\mathbf A$ are operations which act upon the columns of $\mathbf A$ as follows.

For some $i, j \in \closedint 1 n: i \ne j$:

\((\text {ECO} 1)\)   $:$   \(\ds \kappa_i \to \lambda \kappa_i \)    For some $\lambda \in K_{\ne 0}$, multiply column $i$ by $\lambda$      
\((\text {ECO} 2)\)   $:$   \(\ds \kappa_i \to \kappa_i + \lambda \kappa_j \)    For some $\lambda \in K$, add $\lambda$ times column $j$ to column $i$      
\((\text {ECO} 3)\)   $:$   \(\ds \kappa_i \leftrightarrow \kappa_j \)    Interchange columns $i$ and $j$      

Also see