# Category:Examples of Rings

Jump to navigation
Jump to search

This category contains examples of Ring (Abstract Algebra) in the context of Abstract Algebra.

A **ring** $\struct {R, *, \circ}$ is a semiring in which $\struct {R, *}$ forms an abelian group.

That is, in addition to $\struct {R, *}$ being closed, associative and commutative under $*$, it also has an identity, and each element has an inverse.

## Subcategories

This category has the following 11 subcategories, out of 11 total.

### E

### G

### N

- Null Ring (4 P)

### P

### R

- Ring of Linear Operators (1 P)
- Rings of Endomorphisms (3 P)
- Rings of Sequences (2 P)
- Rings of Square Matrices (5 P)

## Pages in category "Examples of Rings"

The following 14 pages are in this category, out of 14 total.