Category:Hölder's Inequality for Sums

From ProofWiki
Jump to navigation Jump to search

This category contains pages concerning Hölder's Inequality for Sums:


Let $p, q \in \R_{>0}$ be strictly positive real numbers such that:

$\dfrac 1 p + \dfrac 1 q = 1$

Let $\GF \in \set {\R, \C}$, that is, $\GF$ represents the set of either the real numbers or the complex numbers.


Formulation $1$

Let $\mathbf x$ and $\mathbf y$ denote the vectors consisting of the sequences:

$\mathbf x = \sequence {x_n} \in {\ell^p}_\GF$
$\mathbf y = \sequence {y_n} \in {\ell^q}_\GF$

where ${\ell^p}_\GF$ denotes the $p$-sequence space in $\GF$.


Let $\norm {\mathbf x}_p$ denote the $p$-norm of $\mathbf x$.


Then:

$\mathbf x \mathbf y \in {\ell^1}_\GF$

and:

$\norm {\mathbf x \mathbf y}_1 \le \norm {\mathbf x}_p \norm {\mathbf y}_q$

where:

$\mathbf x \mathbf y := \sequence {x_n y_n}_{n \mathop \in \N}$
$\norm {\mathbf x \mathbf y}_1$ is the $1$-norm, also known as the taxicab norm.


Formulation $2$

Let $\sequence {x_n}_{n \mathop \in \N}$ and $\sequence {y_n}_{n \mathop \in \N}$ be sequences in $\GF$ such that $\ds \sum_{k \mathop \in \N} \size {x_k}^p$ and $\ds \sum_{k \mathop \in \N} \size {y_k}^q$ are convergent.


Then:

$\ds \sum_{k \mathop \in \N} \size {x_k y_k} \le \paren {\sum_{k \mathop \in \N} \size {x_k}^p}^{1 / p} \paren {\sum_{k \mathop \in \N} \size {y_k}^q}^{1 / q}$