Category:Idempotent Mappings

From ProofWiki
Jump to navigation Jump to search

This category contains results about Idempotent Mappings.

Let $f: S \to S$ be a mapping.

Then $f$ is idempotent if and only if:

$\forall x \in S: \map f {\map f x} = \map f x$

That is, if and only if applying the same mapping a second time to an argument gives the same result as applying it once.

And of course, that means the same as applying it as many times as you want.

The condition for idempotence can also be written:

$f \circ f = f$

where $\circ$ denotes composition of mappings.

Pages in category "Idempotent Mappings"

The following 2 pages are in this category, out of 2 total.