Category:Moment Generating Functions
Jump to navigation
Jump to search
This category contains results about moment generating functions.
Let $X$ be a random variable.
Then the moment generating function of $X$, $M_X$, is defined as:
- $\map {M_X} t = \expect {e^{t X} }$
for all $t$ such that this expectation exists.
Subcategories
This category has the following 5 subcategories, out of 5 total.
M
Pages in category "Moment Generating Functions"
The following 18 pages are in this category, out of 18 total.
M
- Moment Generating Function of Bernoulli Distribution
- Moment Generating Function of Beta Distribution
- Moment Generating Function of Binomial Distribution
- Moment Generating Function of Chi-Squared Distribution
- Moment Generating Function of Continuous Uniform Distribution
- Moment Generating Function of Discrete Uniform Distribution
- Moment Generating Function of Exponential Distribution
- Moment Generating Function of Gamma Distribution
- Moment Generating Function of Gaussian Distribution
- Moment Generating Function of Geometric Distribution
- Moment Generating Function of Geometric Distribution/Formulation 1
- Moment Generating Function of Geometric Distribution/Formulation 2
- Moment Generating Function of Linear Combination of Independent Random Variables
- Moment Generating Function of Linear Transformation of Random Variable
- Moment Generating Function of Logistic Distribution
- Moment Generating Function of Pareto Distribution
- Moment Generating Function of Poisson Distribution
- Moment in terms of Moment Generating Function