# Category:Naive Set Theory

Jump to navigation
Jump to search

This category contains results about **Naive Set Theory**.

Definitions specific to this category can be found in Definitions/Naive Set Theory.

**Naïve set theory**, in contrast with axiomatic set theory, is an approach to set theory which assumes the existence of a universal set, despite the fact that such an assumption leads to paradoxes.

A popular alternative (and inaccurate) definition describes this as a

*non-formalized definition of set theory which describes sets and the relations between them using natural language.*

However, the discipline is founded upon quite as rigid a set of axioms, namely, those of propositional and predicate logic.

## Subcategories

This category has the following 3 subcategories, out of 3 total.

## Pages in category "Naive Set Theory"

The following 4 pages are in this category, out of 4 total.