# Category:Orderings

Jump to navigation
Jump to search

This category contains results about **Orderings**.

Definitions specific to this category can be found in Definitions/Orderings.

Let $S$ be a set.

### Definition 1

$\RR$ is an **ordering on $S$** if and only if $\RR$ satisfies the ordering axioms:

\((1)\) | $:$ | $\RR$ is reflexive | \(\ds \forall a \in S:\) | \(\ds a \mathrel \RR a \) | |||||

\((2)\) | $:$ | $\RR$ is transitive | \(\ds \forall a, b, c \in S:\) | \(\ds a \mathrel \RR b \land b \mathrel \RR c \implies a \mathrel \RR c \) | |||||

\((3)\) | $:$ | $\RR$ is antisymmetric | \(\ds \forall a, b \in S:\) | \(\ds a \mathrel \RR b \land b \mathrel \RR a \implies a = b \) |

### Definition 2

$\RR$ is an **ordering on $S$** if and only if $\RR$ satisfies the ordering axioms:

\((1)\) | $:$ | \(\ds \RR \circ \RR \) | |||||||

\((2)\) | $:$ | \(\ds \RR \cap \RR^{-1} = \Delta_S \) |

where:

- $\circ$ denotes relation composition
- $\RR^{-1}$ denotes the inverse of $\RR$
- $\Delta_S$ denotes the diagonal relation on $S$.

## Subcategories

This category has the following 2 subcategories, out of 2 total.

### O

### S

- Subset Relation is Ordering (4 P)

## Pages in category "Orderings"

The following 22 pages are in this category, out of 22 total.