Category:Quadratic Forms
Jump to navigation
Jump to search
This category contains results about Quadratic Forms.
Definitions specific to this category can be found in Definitions/Quadratic Forms.
Let $\mathbb K$ be a field of characteristic $\Char {\mathbb K} \ne 2$.
Let $V$ be a vector space over $\mathbb K$.
A quadratic form on $V$ is a mapping $q : V \mapsto \mathbb K$ such that:
- $\forall v \in V : \forall \kappa \in \mathbb K : \map q {\kappa v} = \kappa^2 \map q v$
- $b: V \times V \to \mathbb K: \tuple {v, w} \mapsto \map q {v + w} - \map q v - \map q w$ is a bilinear form