Category:Restricted Dipper Relations

From ProofWiki
Jump to navigation Jump to search

This category contains results about Restricted Dipper Relations.

The restricted dipper relation $\RR^*_{m, n}$ is the restriction of the dipper relation $\RR_{m, n}$ on $\N$:

$\forall x, y \in \N_{>0}: x \mathrel {\RR^*_{m, n} } y \iff \begin {cases} x = y \\ m \le x < y \text { and } n \divides \paren {y - x} \\ m \le y < x \text { and } n \divides \paren {x - y} \end {cases}$