Category:Semirings of Sets
Jump to navigation
Jump to search
This category contains results about Semirings of Sets.
Definitions specific to this category can be found in Definitions/Semirings of Sets.
A semiring of sets or semi-ring of sets is a system of sets $\SS$, subject to:
- $(1):\quad \O \in \SS$
- $(2):\quad A, B \in \SS \implies A \cap B \in \SS$; that is, $\SS$ is $\cap$-stable
- $(3):\quad$ If $A, A_1 \in \SS$ such that $A_1 \subseteq A$, then there exists a finite sequence $A_2, A_3, \ldots, A_n \in \SS$ such that:
- $(3a):\quad \ds A = \bigcup_{k \mathop = 1}^n A_k$
- $(3b):\quad$ The $A_k$ are pairwise disjoint
Alternatively, criterion $(3)$ can be replaced by:
- $(3'):\quad$ If $A, B \in \SS$, then there exists a finite sequence of pairwise disjoint sets $A_1, A_2, \ldots, A_n \in \SS$ such that $\ds A \setminus B = \bigcup_{k \mathop = 1}^n A_k$.
Pages in category "Semirings of Sets"
The following 8 pages are in this category, out of 8 total.