Category:Symmetric Difference

From ProofWiki
Jump to navigation Jump to search

This category contains results about Symmetric Difference.
Definitions specific to this category can be found in Definitions/Symmetric Difference.

The symmetric difference between two sets $S$ and $T$ is written $S \symdif T$ and is defined as:

Definition 1

$S \symdif T := \paren {S \setminus T} \cup \paren {T \setminus S}$

Definition 2

$S \symdif T = \paren {S \cup T} \setminus \paren {S \cap T}$

Definition 3

$S \symdif T = \paren {S \cap \overline T} \cup \paren {\overline S \cap T}$

Definition 4

$S \symdif T = \paren {S \cup T}\cap \paren {\overline S \cup \overline T}$

Definition 5

$S \symdif T := \set {x: x \in S \oplus x \in T}$


This category has the following 4 subcategories, out of 4 total.