Cauchy-Riemann Equations
Theorem
Let $D \subseteq \C$ be an open subset of the set of complex numbers $\C$.
Let $f: D \to \C$ be a complex function on $D$.
Let $u, v: \set {\tuple {x, y} \in \R^2: x + i y = z \in D} \to \R$ be two real-valued functions defined as:
- $\map u {x, y} = \map \Re {\map f z}$
- $\map v {x, y} = \map \Im {\map f z}$
where:
- $\map \Re {\map f z}$ denotes the real part of $\map f z$
- $\map \Im {\map f z}$ denotes the imaginary part of $\map f z$.
Then $f$ is complex-differentiable in $D$ if and only if:
- $u$ and $v$ are differentiable in their entire domain
and:
- The following two equations, known as the Cauchy-Riemann equations, hold for the continuous partial derivatives of $u$ and $v$:
- $(1): \quad \dfrac {\partial u} {\partial x} = \dfrac {\partial v} {\partial y}$
- $(2): \quad \dfrac {\partial u} {\partial y} = -\dfrac {\partial v} {\partial x}$
If the conditions are true, then for all $z \in D$:
- $\map {f'} z = \map {\dfrac {\partial f} {\partial x} } z = -i \map {\dfrac {\partial f} {\partial y} } z$
Proof
Necessary Condition
Let $z = x + i y \in D$.
The Epsilon-Function Complex Differentiability Condition shows that there exists $r \in \R_{>0}$ such that for all $t \in \map {B_r} 0 \setminus \set 0$:
- $(\text i) \quad \map f {z + t} = \map f z + t \paren {\map {f'} z + \map \epsilon t}$
where:
- $\map {B_r} 0$ denotes an open ball of $0$
- $\epsilon: \map {B_r} 0 \setminus \set 0 \to \CC$ is a function with $\ds \lim_{t \mathop \to 0} \map \epsilon t = 0$.
Define $a, b, h, k \in \R$ by $a + i b = \map {f'} z$, and $h + i k = t$.
By taking the real parts of both sides of equation $(\text i)$, it follows that:
\(\ds \map u {x + h, y + k}\) | \(=\) | \(\ds \map \Re {\map f z} + \map \Re {t \map {f'} z} + \map \Re {t \map \epsilon t}\) | Addition of Real and Imaginary Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \map u {x, y} + \map \Re {h a - k b + i h b + i a k} + \map \Re {h \map \epsilon t + i k \map \epsilon t}\) | Definition of Complex Multiplication | |||||||||||
\(\ds \) | \(=\) | \(\ds \map u {x, y} + h a - k b + h \map \Re {\map \epsilon t} + k \map \Re {i \map \epsilon t}\) | Multiplication of Real and Imaginary Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \map u {x, y} + h \paren {a + \map \Re {\map \epsilon t} } + k \paren {-b + \map \Re {i \map \epsilon t} }\) |
To find the partial derivative $\dfrac {\partial u} {\partial x}$, assume that $y$ is fixed, and let $t$ be wholly real.
Then $t = h$, and $k = 0$, so:
- $\map u {x + h, y} = \map u {x, y} + h \paren {a + \map \Re {\map \epsilon h} }$
From Limits of Real and Imaginary Parts, it follows that:
- $\ds \lim_{h \mathop \to 0} \map \Re {\map \epsilon h} = \map \Re {\lim_{h \mathop \to 0} \map \epsilon h} = \map \Re 0 = 0$
Then the Epsilon-Function Differentiability Condition proves that:
- $\map {\dfrac {\partial u} {\partial x} } {x, y} = a$
To find the partial derivative $\dfrac {\partial u} {\partial y}$, assume that $x$ is fixed, and let $t$ be wholly imaginary.
Then $t = i k$, and $h = 0$, so:
- $\map u {x, y + k} = \map u {x, y} + k \paren {-b + \map \Re {i \map \epsilon {i k} } }$
From Limits of Real and Imaginary Parts, it follows that:
- $\ds \lim_{k \mathop \to 0} \map \Re {i \map \epsilon k} = \map \Re {i \lim_{k \mathop \to 0} \map \epsilon k} = 0$
Then the Epsilon-Function Differentiability Condition proves that:
- $\map {\dfrac {\partial u} {\partial y} } {x, y} = -b$
$\Box$
By taking the imaginary parts of both sides of equation $(\text i)$, it follows that:
\(\ds \map v {x + h, y + k}\) | \(=\) | \(\ds \map v {x, y} + \map \Im {h a - k b + i h b + i a k} + \map \Im {h \map \epsilon t + i k \map \epsilon t}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map v {x, y} + h \paren {b + \map \Im {\map \epsilon t} } + k \paren {a + \map \Im {i \map \epsilon t} }\) | by a similar calculation to the one above |
To find the partial derivative $\dfrac {\partial v} {\partial x}$, assume that $y$ is fixed, and let $t$ be wholly real.
Then $t = h$, and $k = 0$, so:
- $\map v {x + h, y} = \map v {x, y} + h \paren {b + \map \Im {\map \epsilon h} }$
A similar argument to the ones above shows that the Epsilon-Function Differentiability Condition can be applied to prove that:
- $\map {\dfrac {\partial v} {\partial x} } {x, y} = b = -\map {\dfrac {\partial u} {\partial y} } {x, y}$
This proves the second Cauchy-Riemann equation.
To find the partial derivative $\dfrac {\partial v} {\partial y}$, assume that $x$ is fixed, and let $t$ be wholly imaginary.
Then $t = ik$, and $h = 0$, so:
- $\map v {x, y + k} = \map v {x, y} + k \paren {a + \map \Im {i \map \epsilon {i k} } }$
Here, the Epsilon-Function Differentiability Condition shows that:
- $\map {\dfrac {\partial v} {\partial y} } {x, y} = a = \map {\dfrac {\partial u} {\partial x} } {x, y}$
This proves the first Cauchy-Riemann equation.
$\Box$
From Holomorphic Function is Continuously Differentiable, it follows that $f'$ is continuous.
From Composite of Continuous Mappings is Continuous and Real and Imaginary Part Projections are Continuous, it follows that $\map \Re {f'}$ and $\map \Im {f'}$ are continuous.
Then all four partial derivatives are continuous, as:
- $\map {\dfrac {\partial u} {\partial x} } {x, y} = \map {\dfrac {\partial v} {\partial y} } {x, y} = a = \map \Re {\map {f'} z}$
- $\map {\dfrac {\partial u} {\partial y} } {x, y} = -\map {\dfrac {\partial v} {\partial x} } {x, y} = -b = -\map \Im {\map {f'} z}$
By definition of differentiablity of real-valued functions, it follows that $u$ and $v$ are differentiable.
$\Box$
Sufficient Condition
Suppose that the Cauchy-Riemann equations hold for $u$ and $v$ in their entire domain.
Let $h, k \in \R \setminus \set 0$, and put $t = h + i k \in \C$.
Let $\tuple {x, y} \in \R^2$ be a point in the domain of $u$ and $v$.
Put:
- $a = \map {\dfrac {\partial u} {\partial x} } {x, y} = \map {\dfrac {\partial v} {\partial y} } {x, y}$
and:
- $b = -\map {\dfrac {\partial u} {\partial y} } {x, y} = \map {\dfrac {\partial v} {\partial x} } {x, y}$
From the Epsilon-Function Differentiability Condition, it follows that:
- $\map u {x + h, y} = \map u {x, y} + h \paren {a + \map {\epsilon_{u x} } h}$
- $\map u {x, y + k} = \map u {x, y} + k \paren {-b + \map {\epsilon_{u y} } k}$
- $\map v {x + h, y} = \map v {x, y} + h \paren {b + \map {\epsilon_{v x} } k}$
- $\map v {x, y + k} = \map v {x, y} + k \paren {a + \map {\epsilon_{v y} } h}$
where $\epsilon_{u x}, \epsilon_{u y}, \epsilon_{v x}, \epsilon_{v y}$ are real functions that converge to $0$ as $h$ and $k$ tend to $0$.
We have by hypothesis that the partial derivatives are continuous.
Then Epsilon-Function Differentiability Condition shows that $\epsilon_{u x}, \epsilon_{u y}, \epsilon_{v x}, \epsilon_{v y}$ are continuous real functions.
With $z = x + i y$, it follows that:
\(\ds \map f {z + t}\) | \(=\) | \(\ds \map u {x + h, y + k} + i \map v {x + h, y + k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map u {x, y} + i \map v {x, y} + h \paren {a + i b + \map {\epsilon_{u x} } h + i \map {\epsilon_{v x} } h} + k \paren {i a - b + \map {\epsilon_{u y} } k + i \map {\epsilon_{v y} } k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f z + t \paren {a + i b + \dfrac h t \map {\epsilon_{u x} } h + \dfrac h t i \map {\epsilon_{v x} } h - \dfrac k t i \map {\epsilon_{u y} } k + \dfrac k t \map {\epsilon_{v y} } k}\) |
Now, define $\map \epsilon t$ as:
\(\ds \map \epsilon t\) | \(=\) | \(\ds \dfrac h t \map {\epsilon_{u x} } h + \dfrac h t i \map {\epsilon_{v x} } h - \dfrac k t i \map {\epsilon_{u y} } k + \dfrac k t \map {\epsilon_{v y} } k\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \cmod {\map \epsilon t}\) | \(\le\) | \(\ds \cmod {\dfrac h t \map {\epsilon_{u x} } h} + \cmod {\dfrac h t \map {\epsilon_{v x} } h} + \cmod {\dfrac k t \map {\epsilon_{u y} } k} + \cmod {\dfrac k t \map {\epsilon_{v y} } k}\) | Triangle Inequality for Complex Numbers | ||||||||||
\(\ds \) | \(=\) | \(\ds \cmod {\dfrac h t} \cmod {\map {\epsilon_{u x} } h} + \cmod {\dfrac h t} \cmod {\map {\epsilon_{v x} } h} + \cmod {\dfrac k t} \cmod {\map {\epsilon_{u y} } k} + \cmod {\dfrac k t} \cmod {\map {\epsilon_{v y} } k}\) | Complex Modulus of Product of Complex Numbers |
By Modulus Larger than Real Part and Imaginary Part:
- $\cmod k \le \cmod t$
and:
- $\cmod h \le \cmod t$
Hence dividing by $\cmod t$ we have:
- $\cmod {\dfrac h t} \le 1$
and:
- $\cmod {\dfrac k t} \le 1$
From Composite of Continuous Mappings is Continuous, it follows that $\map \epsilon t$ is continuous.
Thus:
\(\ds \lim_{t \mathop \to 0} \cmod {\map \epsilon t}\) | \(\le\) | \(\ds \lim_{t \mathop \to 0} \cmod {\dfrac h t} \cmod {\map {\epsilon_{u x} } h} + \cmod {\dfrac h t} \cmod {\map {\epsilon_{v x} } h}\) | Combined Sum Rule for Limits of Complex Functions | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \cmod {\dfrac k t} \cmod {\map {\epsilon_{u y} } k} + \cmod {\dfrac k t} \cmod {\map {\epsilon_{v y} } k}\) | |||||||||||
\(\ds \) | \(\le\) | \(\ds \lim_{t \mathop \to 0} \cmod {\map {\epsilon_{u x} } h} + \lim_{t \mathop \to 0} \cmod {\map {\epsilon_{v x} } h}\) | as $\cmod {\dfrac h t} \le 1$ and $\cmod {\dfrac k t} \le 1$ from above | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \lim_{t \mathop \to 0} \cmod {\map {\epsilon_{u y} } k} + \lim_{t \mathop \to 0} \cmod {\map {\epsilon_{v y} } k}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
This shows that:
- $\ds \lim_{t \mathop \to 0} \map \epsilon t = 0$
Then the Epsilon-Function Complex Differentiability Condition shows that:
- $\map {f'} x = a + i b$
$\blacksquare$
Expression of Derivative
Let $z = x + i y$.
Then:
\(\ds \dfrac {\partial f} {\partial x} \left({z}\right)\) | \(=\) | \(\ds \dfrac {\partial u} {\partial x} \left({x, y}\right) + i \dfrac {\partial v} {\partial x} \left({x, y}\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \operatorname{Re} \left({f' \left({z}\right) }\right) + i \operatorname{Im} \left({f' \left({z}\right) }\right)\) | from the last part of the proof for sufficient condition | |||||||||||
\(\ds \) | \(=\) | \(\ds f' \left({z}\right)\) |
Similarly:
\(\ds -i \dfrac {\partial f} {\partial y} \left({z}\right)\) | \(=\) | \(\ds -i \left({\dfrac {\partial u} {\partial y} \left({x, y}\right) + i \dfrac {\partial v} {\partial y} \left({x, y}\right) }\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -i \left({ -\operatorname{Im} \left({f' \left({z}\right) }\right) + i \operatorname{Re} \left({f' \left({z}\right) }\right) }\right)\) | from the last part of the proof for sufficient condition | |||||||||||
\(\ds \) | \(=\) | \(\ds f' \left({z}\right)\) |
$\blacksquare$
Source of Name
This entry was named for Augustin Louis Cauchy and Georg Friedrich Bernhard Riemann.
Historical Note
The Cauchy-Riemann Equations were used by Bernhard Riemann as the basis for his theory of the concept of the analytic function.
Sources
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Cauchy-Riemann equations
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Cauchy-Riemann equations
- 2001: Christian Berg: Kompleks funktionsteori: $\S 1.3$
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Cauchy-Riemann equations
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Cauchy-Riemann equations
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Cauchy-Riemann equations