Ceiling minus Real Number

From ProofWiki
Jump to navigation Jump to search

Theorem

$\forall x \in \R: \ceiling x - x \in \hointr 0 1$

where $\ceiling x$ denotes the ceiling of $x$.


Proof

\(\ds \ceiling x - 1\) \(<\) \(\ds x \le \ceiling x\) Real Number is between Ceiling Functions
\(\ds \leadsto \ \ \) \(\ds \ceiling x - 1 - \ceiling x\) \(<\) \(\ds x - \ceiling x \le \ceiling x - \ceiling x\)
\(\ds \leadsto \ \ \) \(\ds -1\) \(<\) \(\ds x - \ceiling x \le 0\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(>\) \(\ds \ceiling x - x \ge 0\)
\(\ds \leadsto \ \ \) \(\ds \ceiling x - x\) \(\in\) \(\ds \hointr 0 1\)

$\blacksquare$