Topological Properties of Non-Archimedean Division Rings/Centers of Open Balls

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, \norm {\,\cdot\,} }$ be a normed division ring with non-Archimedean norm $\norm {\,\cdot\,}$,

For $a \in R$ and $\epsilon \in \R_{>0}$ let:

$\map {B_\epsilon} a$ denote the open $\epsilon$-ball of $a$ in $\struct {R, \norm {\,\cdot\,} }$


Let $x, y \in R$.

Let $r \in \R_{>0}$.


Then:

$y \in \map {B_r} x \implies \map {B_r} y = \map {B_r} x$


Proof

Let $y \in \map {B_r} x$.


Let $a \in \map {B_r} y$.

By the definition of an open ball, then:

$\norm {a - y} < r$
$\norm {y - x} < r$

Hence:

\(\ds \norm {a - x}\) \(=\) \(\ds \norm {a - y + y - x}\)
\(\ds \) \(\le\) \(\ds \max \set {\norm {a - y}, \norm{y - x} }\) Definition of Non-Archimedean Division Ring Norm
\(\ds \) \(<\) \(\ds r\)


By the definition of an open ball:

$a \in \map {B_r} x$

Hence:

$\map {B_r} y \subseteq \map {B_r} x$


By Norm of Negative:

$\norm {x - y} < r$

By the definition of an open ball:

$x \in \map {B_r} y$

Similarly it follows that:

$\map {B_r} x \subseteq \map {B_r} y$


By set equality:

$\map {B_r} y = \map {B_r} x$

$\blacksquare$


Sources