Change of Coordinate Vector Under Change of Basis
Theorem
Let $R$ be a ring with unity.
Let $M$ be a free $R$-module of finite dimension $n>0$.
Let $\BB$ and $\CC$ be bases of $M$.
Let $\mathbf M_{\BB, \CC}$ be the change of basis matrix from $\BB$ to $\CC$.
Let $m \in M$.
Let $\sqbrk m_\BB$ and $\sqbrk m_\CC$ be its coordinate vectors relative to $\BB$ and $\CC$ respectively.
Then $\sqbrk m_\BB = \mathbf M_{\BB, \CC} \cdot \sqbrk m_\CC$.
Proof
Intuitively, when we consider $\BB$ and $\CC$ as row vectors, this is because:
- $\CC = \BB \cdot \mathbf M_{\BB, \CC}$ and:
- $\BB \cdot \sqbrk m_\BB = \CC \cdot \sqbrk m_\CC$ imply:
- $\BB \cdot \sqbrk m_\BB = \BB \cdot \mathbf M_{\BB, \CC} \cdot \sqbrk m_\CC$.
Because $\BB$ is a basis, this implies $\sqbrk m_\BB = \mathbf M_{\BB, \CC} \cdot \sqbrk m_\CC$.
This can be formalized by giving $R \times M$ the structure of a ring. Alternatively, this can be verified directly, which boils down to re-proving that that matrix multiplication is associative.
![]() | This theorem requires a proof. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Also see
- Change of Coordinate Vectors Under Linear Mapping, an analogous result for linear transformations, of which this is a special case
- Change of Basis Matrix under Linear Transformation