Characteristic Function of Gaussian Distribution/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Lemma for Characteristic Function of Gaussian Distribution

Let $\map \phi t$ denote the characteristic function of the Gaussian distribution with mean $\mu$ and variance $\sigma^2$.


Let:

$k = \mu + i t \sigma^2$
$c = e^{\mu i t - \frac 1 2 t^2 \sigma^2}$

Then:

$\map \phi t = c \dfrac 1 {\sqrt {2 \pi \sigma^2} } \ds \int_{x \mathop \in \R} e^{-\paren {\frac {x - k} {\sqrt 2 \sigma} }^2} \rd x$


Proof

The characteristic function is defined as

\(\ds \map \phi t\) \(=\) \(\ds \expect {e^{i t X} }\) where $\expect {\, \cdot \,}$ denotes expectation
\(\ds \) \(=\) \(\ds \int_{x \mathop \in \R} e^{i t x} \frac 1 {\sqrt {2 \pi \sigma^2} } e^{-\frac {\paren {x - \mu}^2} {2 \sigma^2} } \rd x\)
\(\ds \) \(=\) \(\ds \frac 1 {\sqrt {2 \pi \sigma^2} } \int_{x \mathop \in \R} e^{i t x} e^{-\frac {\paren {x - \mu}^2} {2 \sigma^2} } \rd x\)
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \frac 1 {\sqrt {2 \pi \sigma^2} } \int_{x \mathop \in \R} e^{i t x - \frac {\paren {x - \mu}^2} {2 \sigma^2} } \rd x\)


Begin by verifying that:

$i t x - \dfrac {\paren {x - \mu}^2} {2 \sigma^2} = -\dfrac {\paren {x - k}^2 + 2 \mu i t \sigma^2 - t^2 \sigma^4} {2 \sigma^2}$

We can then simplify the integral in $(1)$:

\(\ds \int_{x \mathop \in \R} e^{i t x - \frac {\paren {x - \mu}^2} {2\sigma^2} } \rd x\) \(=\) \(\ds \int_{x \mathop \in \R} e^{-\frac {\paren {x - \mu}^2 + 2 \mu i t \sigma^2 - t^2 \sigma^4} {2 \sigma^2} } \rd x\)
\(\ds \) \(=\) \(\ds e^{\frac {2 \mu i t \sigma^2 - t^2 \sigma^4} {2 \sigma^2} } \int_{x \mathop \in \R} e^{-\frac {\paren {x - k}^2} {2 \sigma^2} } \rd x\)
\(\ds \) \(=\) \(\ds e^{\mu i t - \frac 1 2 t^2 \sigma^2} \int_{x \mathop \in \R} e^{-\paren {\frac {x - k} {\sqrt 2 \sigma} }^2} \rd x\)
\(\ds \) \(=\) \(\ds c \int_{x \mathop \in \R} e^{-\paren {\frac {x - k} {\sqrt 2 \sigma} }^2} \rd x\)

$\blacksquare$