Characteristic Function on Event is Discrete Random Variable
Jump to navigation
Jump to search
Theorem
Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.
Let $E \in \Sigma$ be any event of $\struct {\Omega, \Sigma, \Pr}$.
Let $\chi_E: \Omega \to \set {0, 1}$ be the characteristic function of $E$.
Then $\chi_E$ is a discrete random variable on $\struct {\Omega, \Sigma, \Pr}$.
Proof
By definition of characteristic function:
- $\forall \omega \in \Omega: \chi_E = \begin{cases} 1 & : \omega \in E \\ 0 & : \omega \notin E \\ \end{cases}$
Then clearly:
- $\forall x \in \R: \map { {\chi_E}^{-1} } x = \begin{cases} E & : x = 1 \\ \Omega \setminus E & : x = 0 \\ \O & : x \notin \set {0, 1} \end{cases}$
So whatever the value of $x \in \R$, its preimage is in $\Sigma$.
Hence the result.
$\blacksquare$
Sources
- 1986: Geoffrey Grimmett and Dominic Welsh: Probability: An Introduction ... (previous) ... (next): $\S 2.1$: Probability mass functions: Exercise $3$