Chinese Remainder Theorem/Warning
Jump to navigation
Jump to search
Theorem
Let $a, b, r, s \in \Z$.
Let $r$ not be coprime to $s$.
Then it is not necessarily the case that:
- $a \equiv b \pmod {r s}$ if and only if $a \equiv b \pmod r$ and $a \equiv b \pmod s$
where $a \equiv b \pmod r$ denotes that $a$ is congruent modulo $r$ to $b$.
Proof
Let $a = 30, b = 40, r = 2, s = 10$.
We have that:
\(\ds 30\) | \(\equiv\) | \(\ds 40\) | \(\ds \pmod 2\) | ||||||||||||
\(\ds 30\) | \(\equiv\) | \(\ds 40\) | \(\ds \pmod {10}\) | ||||||||||||
But note that: | |||||||||||||||
\(\ds 30\) | \(\not \equiv\) | \(\ds 40\) | \(\ds \pmod {20}\) |
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.4$: Integer Functions and Elementary Number Theory: Exercise $23$