Class Intersection Distributes over Class Union

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$, $B$ and $C$ be classes.

Then:

$A \cap \paren {B \cup C} = \paren {A \cap B} \cup \paren {A \cap C}$

where:

$A \cap B$ denotes class intersection
$B \cup C$ denotes class union.


Proof

\(\ds \) \(\) \(\ds x \in A \cap \paren {B \cup C}\)
\(\ds \) \(\leadstoandfrom\) \(\ds x \in A \land \paren {x \in B \lor x \in C}\) Definition of Class Union and Definition of Class Intersection
\(\ds \) \(\leadstoandfrom\) \(\ds \paren {x \in A \land x \in B} \lor \paren {x \in A \land x \in C}\) Conjunction is Left Distributive over Disjunction
\(\ds \) \(\leadstoandfrom\) \(\ds x \in \paren {A \cap B} \cup \paren {A \cap C}\) Definition of Class Union and Definition of Class Intersection

$\blacksquare$


Also see


Sources