Class Member of Class Builder

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ be a class.

Let $x$ be a set.


Let $\map P x$ be a well-formed formula in the language of set theory.

Let $\map P A$ denote the formula $\map P x$ with all free instances of $x$ replaced with instances of $A$.

Let $\set {x: \map P x}$ be a class specified using class builder notation.


Then:

$A \in \set {x: \map P x} \iff \paren {\exists x: x = A \land \map P A}$


Proof

\(\ds A\) \(\in\) \(\, \ds \leftset x \, \) \(\, \ds : \, \) \(\ds \rightset {\map P x}\)
\(\ds \leadsto \ \ \) \(\ds \exists x \in \set {x: \map P x}: \, \) \(\ds A\) \(=\) \(\, \ds x \, \) \(\ds \) Definition of Class (Zermelo-Fraenkel)
\(\ds \leadsto \ \ \) \(\ds \exists x: \, \) \(\ds x\) \(=\) \(\, \ds A \, \) \(\, \ds \land \, \) \(\ds \map P x\) Definition of Bounded Existential Quantifier
\(\ds \leadsto \ \ \) \(\ds \exists x: \, \) \(\ds x\) \(=\) \(\, \ds A \, \) \(\, \ds \land \, \) \(\ds \map P A\) Substitutivity of Class Equality

$\blacksquare$


Also see


Sources