Closed Form for Hexagonal Pyramidal Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

The closed-form expression for the $n$th hexagonal pyramidal number is:

$S_n = \dfrac {n \paren {n + 1} \paren {4 n - 1} } 6$


Proof

\(\ds S_n\) \(=\) \(\ds \sum_{k \mathop = 1}^n H_k\) Definition of Hexagonal Pyramidal Number
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^n k \paren {2 k - 1}\) Closed Form for Hexagonal Numbers
\(\ds \) \(=\) \(\ds 3 \sum_{k \mathop = 1}^n 2 k^2 - \sum_{k \mathop = 1}^n k\)
\(\ds \) \(=\) \(\ds \frac {2 n \paren {n + 1} \paren {2 n + 1} } 6 - \sum_{k \mathop = 1}^n k\) Sum of Sequence of Squares
\(\ds \) \(=\) \(\ds \frac {2 n \paren {n + 1} \paren {2 n + 1} } 6 - \dfrac {n \paren {n + 1} } 2\) Closed Form for Triangular Numbers
\(\ds \) \(=\) \(\ds \frac {2 n \paren {n + 1} \paren {2 n + 1} - 3 n \paren {n + 1} } 6\)
\(\ds \) \(=\) \(\ds \frac {n \paren {n + 1} \paren {4 n + 2 - 3} } 6\)
\(\ds \) \(=\) \(\ds \frac {n \paren {n + 1} \paren {4 n - 1} } 6\)

$\blacksquare$