Closed Form for Pentagonal Pyramidal Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

The closed-form expression for the $n$th pentagonal pyramidal number is:

$Q_n = \dfrac {n^2 \paren {n + 1} } 2$


Proof

\(\ds Q_n\) \(=\) \(\ds \sum_{k \mathop = 1}^n P_k\) Definition of Pentagonal Pyramidal Number
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^n \dfrac {k \paren {3 k - 1} } 2\) Closed Form for Pentagonal Numbers
\(\ds \) \(=\) \(\ds \dfrac 1 2 \paren {3 \sum_{k \mathop = 1}^n k^2 - \sum_{k \mathop = 1}^n k}\)
\(\ds \) \(=\) \(\ds \dfrac 1 2 \paren {3 \frac {n \paren {n + 1} \paren {2 n + 1} } 6 - \sum_{k \mathop = 1}^n k}\) Sum of Sequence of Squares
\(\ds \) \(=\) \(\ds \dfrac 1 2 \paren {3 \frac {n \paren {n + 1} \paren {2 n + 1} } 6 - \dfrac {n \paren {n + 1} } 2}\) Closed Form for Triangular Numbers
\(\ds \) \(=\) \(\ds \dfrac 1 2 \paren {\frac {n \paren {n + 1} \paren {2 n + 1} - n \paren {n + 1} } 2}\)
\(\ds \) \(=\) \(\ds \dfrac 1 2 \paren {\frac {n \paren {n + 1} \paren {2 n} } 2}\)
\(\ds \) \(=\) \(\ds \frac {n^2 \paren {n + 1} } 2\)

$\blacksquare$


Sources