Closed Form for Triangular Numbers/Proof by Arithmetic Sequence

From ProofWiki
Jump to navigation Jump to search

Theorem

The closed-form expression for the $n$th triangular number is:

$\ds T_n = \sum_{i \mathop = 1}^n i = \frac {n \paren {n + 1} } 2$


Proof

\(\ds \sum_{i \mathop = 0}^{m - 1} \paren {a + i d}\) \(=\) \(\ds m \paren {a + \frac {m - 1} 2 d}\) Sum of Arithmetic Sequence
\(\ds \sum_{i \mathop = 0}^n \paren {a + i d}\) \(=\) \(\ds \paren {n + 1} \paren {a + \frac n 2 d}\) Let $n = m - 1$
\(\ds \sum_{i \mathop = 0}^n i\) \(=\) \(\ds \paren {n + 1} \paren {\frac n 2}\) Let $a = 0$ and $d = 1$
\(\ds 0 + \sum_{i \mathop = 1}^n i\) \(=\) \(\ds \frac {n \paren {n + 1} } 2\)
\(\ds \sum_{i \mathop = 1}^n i\) \(=\) \(\ds \frac {n \paren {n + 1} } 2\)

$\blacksquare$