Closed Form for Triangular Numbers/Proof using Cardinality of Set
Jump to navigation
Jump to search
Theorem
The closed-form expression for the $n$th triangular number is:
- $\ds T_n = \sum_{i \mathop = 1}^n i = \frac {n \paren {n + 1} } 2$
Proof
Let $\N_n^* = \set {1, 2, 3, \cdots, n}$ be the initial segment of natural numbers.
Let $A = \set {\tuple {a, b}: a \le b, a, b \in \N_n^*}$
Let $B = \set {\tuple {a, b}: a \ge b, a, b, \in \N_n^*}$
Let $\phi: A \to B$ be the mapping:
- $\map \phi {x, y} = \tuple {y, x}$
By definition of dual ordering, $\phi$ is a bijection:
- $(1): \quad \size A = \size B$
We have:
\(\ds A \cup B\) | \(=\) | \(\ds \set {\tuple {a, b}: a, b \in \N_n^*}\) | ||||||||||||
\(\ds A \cap B\) | \(=\) | \(\ds \set {\tuple {a, b}: a = b: a, b \in \N_n^*}\) |
Thus:
\(\ds \size A + \size B\) | \(=\) | \(\ds \size {A \cup B} + \size {A \cap B}\) | Inclusion-Exclusion Principle | |||||||||||
\(\ds \) | \(=\) | \(\ds n^2 + n\) | Count of a finite set |
Combined with $\left({1}\right)$ this yields:
- $\size A = \dfrac {n^2 + n} 2 = \dfrac {n \paren {n + 1} } 2$
It remains to prove that:
- $T_n = \size A$
\(\ds T_n\) | \(=\) | \(\ds \sum_{i \mathop = 1}^n i\) | Definition of $T_n$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{i \mathop \in \N_n^*} i\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{i \mathop \in \N_n^*} \size {\set {a: a \in \N_i^*} }\) | Count of Finite Set,Definition of Initial Segment of One-Based Natural Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {\set {\tuple {a, i} :a\in \N_i^*, i \in \N_n^*} }\) | Inclusion-Exclusion Principle, sets are mutually exclusive as their second argument in the ordered pair are different | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {\set {\tuple {a, b}: a \le b, a, b \in \N_n^*} }\) | Change of Variable, Definition of Initial Segment of One-Based Natural Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \size A\) | Definition of $A$ |
$\blacksquare$