Closure of Intersection and Symmetric Difference imply Closure of Set Difference

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR$ be a system of sets such that for all $A, B \in \RR$:

$(1): \quad A \cap B \in \RR$
$(2): \quad A \symdif B \in \RR$

where $\cap$ denotes set intersection and $\symdif$ denotes set symmetric difference.


Then:

$\forall A, B \in \RR: A \setminus B \in \RR$

where $\setminus$ denotes set difference.


Proof

Let $A, B \in \RR$.

From Set Difference as Symmetric Difference with Intersection:

$A \symdif \paren {A \cap B} = A \setminus B$

By hypothesis:

$A \cap B \in \RR$

and:

$A \symdif \paren {A \cap B} \in \RR$

and so:

$A \setminus B \in \RR$

$\blacksquare$