Common Divisor in Integral Domain Divides Linear Combination

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {D, +, \times}$ be an integral domain.


Let $c$ be a common divisor of two elements $a$ and $b$ of $D$.

That is:

$a, b, c \in D: c \divides a \land c \divides b$


Then:

$\forall p, q \in D: c \divides \paren {p \times a + q \times b}$


Corollary

Let $c$ be a common divisor of two integers $a$ and $b$.

That is:

$a, b, c \in \Z: c \divides a \land c \divides b$


Then $c$ divides any integer combination of $a$ and $b$:

$\forall p, q \in \Z: c \divides \paren {p a + q b}$


Proof

\(\ds c\) \(\divides\) \(\ds a\)
\(\ds \leadsto \ \ \) \(\ds \exists x \in D: \, \) \(\ds a\) \(=\) \(\ds x \times c\) Definition of Divisor of Ring Element
\(\ds c\) \(\divides\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds \exists y \in D: \, \) \(\ds b\) \(=\) \(\ds y \times c\) Definition of Divisor of Ring Element
\(\ds \leadsto \ \ \) \(\ds \forall p, q \in D: \, \) \(\ds p \times a + q \times b\) \(=\) \(\ds p \times x \times c + q \times y \times c\) substituting for $a$ and $b$
\(\ds \) \(=\) \(\ds \paren {p \times x + q \times y} c\) as $\times$ is distributive over $+$
\(\ds \leadsto \ \ \) \(\ds \exists z \in D: \, \) \(\ds p \times a + q \times b\) \(=\) \(\ds z \times c\) where $z = p \times x + q \times y$
\(\ds \leadsto \ \ \) \(\ds c\) \(\divides\) \(\ds \paren {p \times a + q \times b}\) Definition of Divisor of Ring Element

$\blacksquare$


Sources