Commutation Property in Group

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group.

Then $x$ and $y$ commute if and only if $x \circ y \circ x^{-1} = y$.


Proof

\(\ds x \circ y\) \(=\) \(\ds y \circ x\)
\(\ds \leadstoandfrom \ \ \) \(\ds \paren {x \circ y} \circ x^{-1}\) \(=\) \(\ds \paren {y \circ x} \circ x^{-1}\) Cancellation Laws
\(\ds \leadstoandfrom \ \ \) \(\ds x \circ y \circ x^{-1}\) \(=\) \(\ds y \circ \paren {x \circ x^{-1} }\) Definition of Associative Operation
\(\ds \leadstoandfrom \ \ \) \(\ds x \circ y \circ x^{-1}\) \(=\) \(\ds y \circ e\) Definition of Inverse Element
\(\ds \leadstoandfrom \ \ \) \(\ds x \circ y \circ x^{-1}\) \(=\) \(\ds y\) Definition of Identity Element

$\blacksquare$


Sources