Complete Residue System/Examples/Modulo 11/Powers of 2

From ProofWiki
Jump to navigation Jump to search

Examples of Complete Residue Systems

The set of integers:

$\set {0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512}$

forms a complete residue system modulo $11$.


Proof

We have:

\(\ds 16\) \(=\) \(\ds 1 \times 11 + 5\)
\(\ds \) \(\equiv\) \(\ds 5\) \(\ds \pmod {11}\)
\(\ds 32\) \(=\) \(\ds 2 \times 11 + 10\)
\(\ds \) \(\equiv\) \(\ds 10\) \(\ds \pmod {11}\)
\(\ds 64\) \(=\) \(\ds 5 \times 11 + 9\)
\(\ds \) \(\equiv\) \(\ds 9\) \(\ds \pmod {11}\)
\(\ds 128\) \(=\) \(\ds 11 \times 11 + 7\)
\(\ds \) \(\equiv\) \(\ds 7\) \(\ds \pmod {11}\)
\(\ds 256\) \(=\) \(\ds 23 \times 11 + 3\)
\(\ds \) \(\equiv\) \(\ds 3\) \(\ds \pmod {11}\)
\(\ds 512\) \(=\) \(\ds 46 \times 11 + 6\)
\(\ds \) \(\equiv\) \(\ds 6\) \(\ds \pmod {11}\)

Thus we see that:

$\set {0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512}$

is equivalent to:

$\set {0, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6}$

The result follows from Initial Segment of Natural Numbers forms Complete Residue System.

$\blacksquare$


Sources