Complex Number equals Conjugate iff Wholly Real

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number.

Let $\overline z$ be the complex conjugate of $z$.


Then $z = \overline z$ if and only if $z$ is wholly real.


Proof

Let $z = x + i y$.


Then:

\(\ds z\) \(=\) \(\ds \overline z\)
\(\ds \leadsto \ \ \) \(\ds x + i y\) \(=\) \(\ds x - i y\) Definition of Complex Conjugate
\(\ds \leadsto \ \ \) \(\ds +y\) \(=\) \(\ds -y\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds 0\)


Hence by definition, $z$ is wholly real.

$\Box$


Now suppose $z$ is wholly real.

Then:

\(\ds z\) \(=\) \(\ds x + 0 i\)
\(\ds \) \(=\) \(\ds x\)
\(\ds \) \(=\) \(\ds x - 0 i\)
\(\ds \) \(=\) \(\ds \overline z\)

$\blacksquare$


Sources