Complex Numbers as External Direct Product

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\C_{\ne 0}, \times}$ be the group of non-zero complex numbers under multiplication.

Let $\struct {\R_{> 0}, \times}$ be the group of positive real numbers under multiplication.

Let $\struct {K, \times}$ be the circle group.


Then:

$\struct {\C_{\ne 0}, \times} \cong \struct {\R_{> 0}, \times} \times \struct {K, \times}$



Proof

Let $\phi: \C_{\ne 0} \to \R_{> 0} \times K$ be the mapping:

$\map \phi {r e^{i \theta} } = \paren {r, e^{i \theta} }$

$\forall \tuple {a, b} \in \R_{> 0} \times K:\exists z = a \times b \in \C$ such that:

$\map \phi z = \tuple {a, b}$

by Complex Multiplication is Closed and $\R \subset \C$.

So $\phi$ is surjective.


To prove $\phi$ is injective, let $\map \phi {r_1 e^{i \theta_1} } = \map \phi {r_2 e^{i \theta_2} }$.

\(\ds \map \phi {r_1 e^{i \theta_1} }\) \(=\) \(\ds \map \phi {r_2 e^{i \theta_2} }\)
\(\ds \leadsto \ \ \) \(\ds \paren {r_1, e^{i \theta_1} }\) \(=\) \(\ds \paren {r_2, e^{i \theta_2} }\) Definition of $\phi$
\(\ds \leadsto \ \ \) \(\ds r_1 = r_2\) \(\land\) \(\ds e^{i \theta_1} = e^{i \theta_2}\)
\(\ds \leadsto \ \ \) \(\ds r_1 e^{i \theta_1}\) \(=\) \(\ds r_2 e^{i \theta_2}\)

So $\phi$ is injective, thus bijective.


Also:

\(\ds \map \phi {r_1 e^{i \theta_1} \times r_2 e^{i \theta_2} }\) \(=\) \(\ds \map \phi {r_1 r_2 e^{i \theta_1 + i \theta_2} }\) Product of Complex Numbers in Exponential Form
\(\ds \) \(=\) \(\ds \paren {r_1 r_2, e^{i \theta_1 + i \theta_2} }\) Definition of $\phi$
\(\ds \) \(=\) \(\ds \paren {r_1 \times r_2, e^{i \theta_1} \times e^{i \theta_2} }\) Exponential of Sum
\(\ds \) \(=\) \(\ds \paren {r_1, e^{i\theta_1} } \times \paren {r_2, e^{i\theta_2} }\) Definition of Operation Induced by Direct Product
\(\ds \) \(=\) \(\ds \map \phi {r_1 e^{i \theta_1} } \times \map \phi {r_2 e^{i \theta_2} }\) Definition of $\phi$



So $\phi$ is a group homomorphism.

Since it is bijective, it is a group isomorphism.

$\blacksquare$