Composition of Commuting Idempotent Mappings is Idempotent/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $f, g: S \to S$ be idempotent mappings from $S$ to $S$.

Let:

$f \circ g = g \circ f$

where $\circ$ denotes composition.


Then $f \circ g$ is idempotent.


Proof

\(\ds \paren {f \circ g} \circ \paren {f \circ g}\) \(=\) \(\ds f \circ \paren {g \circ f} \circ g\) Composition of Mappings is Associative
\(\ds \) \(=\) \(\ds f \circ \paren {f \circ g} \circ g\) by hypothesis
\(\ds \) \(=\) \(\ds \paren {f \circ f} \circ \paren {g \circ g}\) Composition of Mappings is Associative
\(\ds \) \(=\) \(\ds f \circ g\) $f$ and $g$ are idempotent by hypothesis

$\blacksquare$