Composition of Mapping with Mapping Restricted to Image
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $A, B, C$ be sets.
Let $f : A \to B, g: B \to C$ be mappings.
Let $g \circ f : A \to C$ denote the composite mapping of $f$ with $g$.
Let $f \sqbrk A$ denote the image of $A$ under $f$.
Let $f \restriction_{A \times f \sqbrk A} : A \to f \sqbrk A$ denote the restriction of $f$ to $A \times f \sqbrk A$.
Let $g \restriction_{f \sqbrk A} : f \sqbrk A \to C$ denote the restriction of $g$ to $f \sqbrk A$.
Let $g \restriction_{f \sqbrk A} \circ f \restriction_{A \mathop \times f \sqbrk A} \mathop : A \to C$ denote the composite mapping of $f \restriction_{A \times f \sqbrk A}$ with $g \restriction_{f \sqbrk A}$.
Then:
- $g \restriction_{f \sqbrk A} \circ f \restriction_{A \mathop \times f \sqbrk A} \mathop = g \circ f$
Proof
From Restriction of Mapping is Mapping:
- $f \restriction_{A \times f \sqbrk A} : A \to f \sqbrk A$ is a mapping
and
- $g \restriction_{f \sqbrk A} : f \sqbrk A \to C$ is a mapping
By definition of composite mapping:
- $g \restriction_{f \sqbrk A} \circ f \restriction_{A \mathop \times f \sqbrk A} \mathop : A \to C$ is a well-defined mapping
We have:
\(\ds \forall a \in A: \, \) | \(\ds \map {\paren{g \restriction_{f \sqbrk A} \circ f \restriction_{A \mathop \times f \sqbrk A} } } a\) | \(=\) | \(\ds \map {g \restriction_{f \sqbrk A} } {\map {f \restriction_{A \mathop \times f \sqbrk A} } a }\) | Definition of Composite Mapping | ||||||||||
\(\ds \) | \(=\) | \(\ds \map g {\map {f \restriction_{A \mathop \times f \sqbrk A} } a }\) | Definition of Restriction of Mapping | |||||||||||
\(\ds \) | \(=\) | \(\ds \map g {\map f a }\) | Definition of Restriction of Mapping | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {\paren{g \circ f} } a\) | Definition of Composite Mapping |
From Equality of Mappings:
- $g \restriction_{f \sqbrk A} \circ f \restriction_{A \mathop \times f \sqbrk A} \mathop = g \circ f$
$\blacksquare$