Composition of Right Inverse with Mapping is Idempotent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f: S \to T$ be a mapping.

Let $g: T \to S$ be a right inverse mapping of $f$.

Then:

$\paren {g \circ f} \circ \paren {g \circ f} = g \circ f$


Proof

\(\ds \paren {g \circ f} \circ \paren {g \circ f}\) \(=\) \(\ds g \circ \paren {f \circ g} \circ f\) Composition of Mappings is Associative
\(\ds \) \(=\) \(\ds g \circ I_T \circ f\) Definition of Right Inverse Mapping
\(\ds \) \(=\) \(\ds g \circ f\) Definition of Identity Mapping

$\blacksquare$


Sources