Condition for Divisibility of Powers of Prime

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be a prime.

Let $k, l \in \Z_{>0}$.


Then:

$p^k \divides p^l \iff k \le l$


Proof

Necessary Condition

Let $k \le l$.

Then:

$l - k \ge 0$

Thus $p^k, p^{l - k} \in \Z$ such that $p^l = p^k p^{l - k}$.

Thus:

$p^k \divides p^l$

$\Box$


Sufficient Condition

Let $p^k \divides p^l$.

Then:

$\exists b \in \Z_{>0}: p^l = p^k b$

By the Fundamental Theorem of Arithmetic, $b$ has a unique prime decomposition.

Either $b = 1$ (in which case $k = l$) or $b$ has a prime decomposition consisting entirely of $p$'s.

In this case:

$\exists m \in \Z: b = p^m$

Hence:

$p^{l - k} = p^m$

Thus from the Fundamental Theorem of Arithmetic:

$l - k = m > 0$

Thus:

$l > k$

$\Box$


The result follows from combining the two results.

$\blacksquare$