Condition for Equivalence Relation for Max Operation on Natural Numbers to be Congruence

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR$ be an equivalence relation on the set of natural numbers $\N$.

Let $\vee$ denote the max operation on $\N$:

$\forall a, b \in \N: a \vee b := \max \set {a, b}$


Then:

$\RR$ is a congruence relation for $\vee$ on $\N$

if and only if:

every equivalence class under $\RR$ is a convex subset of $\N$.


Proof

Necessary Condition

Suppose every equivalence class under $\RR$ is a convex subset of $\N$.

Let $x_1, x_2, y_1, y_2 \in \N$ such that $x_1 \mathrel \RR x_2$ and $y_1 \mathrel \RR y_2$.

Without loss of generality, suppose:

$x_1 \le x_2$
$y_1 \le y_2$
$x_1 \le y_1$

Then we have two cases:

Case $1$: $y_1 \le x_2$

In this case we have $x_1 \le y_1 \le x_2$.

Since $\eqclass {x_1} \RR$ is a convex subset of $\N$ and $x_1, x_2 \in \eqclass {x_1} \RR$, we must have:

$y_1 \in \eqclass {x_1} \RR$

Thus, by Equivalence Class Equivalent Statements $(2)$ and $(5)$:

$\eqclass {x_1} \RR = \eqclass {y_1} \RR$.

So $x_1, x_2, y_1, y_2$ all belongs to the same equivalence class, and so does $x_1 \vee y_1$ and $x_2 \vee y_2$.

Therefore $\paren {x_1 \vee y_1} \mathrel \RR \paren {x_2 \vee y_2}$.


Case $2$: $x_2 \le y_1$

In this case we have $x_1 \le x_2 \le y_1 \le y_2$.

Thus:

$x_1 \vee y_1 = y_1$
$x_2 \vee y_2 = y_2$

Since $y_1 \mathrel \RR y_2$:

$\paren {x_1 \vee y_1} \mathrel \RR \paren {x_2 \vee y_2}$


In both cases we have $\paren {x_1 \vee y_1} \mathrel \RR \paren {x_2 \vee y_2}$.

Therefore $\RR$ is a congruence relation for $\vee$ on $\N$.

$\Box$


Sufficient Condition

Suppose that $\RR$ is a congruence relation for $\vee$ on $\N$.

Let $x, y, z \in \N$ and suppose that $x, z \in \eqclass z \RR$ and $x \le y \le z$.

Then:

\(\ds x\) \(\RR\) \(\ds z\) Definition of Equivalence Class
\(\ds y\) \(\RR\) \(\ds y\) Definition of Equivalence Relation: $\RR$ is Reflexive
\(\ds \leadsto \ \ \) \(\ds \paren {x \vee y}\) \(\RR\) \(\ds \paren {z \vee y}\) Definition of Congruence Relation
\(\ds \leadsto \ \ \) \(\ds y\) \(\RR\) \(\ds z\) Definition of Max Operation
\(\ds \leadsto \ \ \) \(\ds y\) \(\in\) \(\ds \eqclass z \RR\) Definition of Equivalence Class

Therefore $\eqclass z \RR$ is a convex subset of $\N$.

As the choice of $x, y, z$ is arbitrary, every equivalence class under $\RR$ is a convex subset of $\N$.

$\blacksquare$


Sources