Condition for Group to Act Effectively on Left Coset Space

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $G$ be a group whose identity is $e$.

Let $H$ be a subgroup of $G$.


Then $G$ acts effectively on the left coset space $G / H$ if and only if:

$\ds \bigcap_{a \mathop \in G} H^a = \set e$

where $H^a$ denotes the conjugate of $H$ by $a$.


Proof

$G$ acts effectively on the left coset space $G / H$ if and only if $a H \mapsto g a H$ is faithful, if and only if:

\(\ds \forall g \in G: \forall a H \in G / H: \, \) \(\ds g a H = a H\) \(\implies\) \(\ds g = e\) Definition of Faithful Group Action
\(\ds \leadstoandfrom \ \ \) \(\ds \forall g \in G: \forall a \in G: \, \) \(\ds a^{-1} g a \in H\) \(\implies\) \(\ds g = e\) Left Cosets are Equal iff Product with Inverse in Subgroup
\(\ds \leadstoandfrom \ \ \) \(\ds \forall g \in G: \forall a \in G: \, \) \(\ds g \in a H a^{-1}\) \(\implies\) \(\ds g = e\)
\(\ds \leadstoandfrom \ \ \) \(\ds \forall g \in G: \forall a \in G: \, \) \(\ds g \in H^a\) \(\implies\) \(\ds g = e\) Definition of Conjugate of Group Subset
\(\ds \leadstoandfrom \ \ \) \(\ds \bigcap_{a \mathop \in G} H^a\) \(=\) \(\ds \set e\) Definition of Intersection of Family

$\blacksquare$


Sources