Condition for Increasing Binomial Coefficients/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{> 0}$ be a (strictly) positive integer.

Let $\dbinom n k$ denote a binomial coefficient for $k \in \N$.


Then:

$\dbinom n k < \dbinom n {k + 1} \iff 0 \le k < \dfrac {n - 1} 2$


Proof

\(\ds \dbinom n k\) \(<\) \(\ds \dbinom n {k + 1}\)
\(\ds \leadstoandfrom \ \ \) \(\ds \frac {n!} {\paren {n - k}! k!}\) \(<\) \(\ds \frac {n!} {\paren {n - k - 1}! \paren {k + 1}!}\) Definition of Binomial Coefficient
\(\ds \leadstoandfrom \ \ \) \(\ds k + 1\) \(<\) \(\ds n - k\) Multiplying both sides by $\dfrac {\paren {n - k}! \paren {k + 1}!} {n!}$
\(\ds \leadstoandfrom \ \ \) \(\ds 2 k\) \(<\) \(\ds n - 1\)
\(\ds \leadstoandfrom \ \ \) \(\ds k\) \(<\) \(\ds \frac {n - 1} 2\)

$\blacksquare$