Condition for Supremum of Subset to equal Supremum of Set

From ProofWiki
Jump to navigation Jump to search

Lemma

Let $S$ be a real set.

Let $T$ be a subset of $S$.

Let $S$ and $T$ admit suprema.


Then:

$\sup S = \sup T \iff \forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: s < t + \epsilon$


Proof

Necessary Condition

Let $\sup S = \sup T$.

The aim is to establish that $\forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: s < t + \epsilon$.


We have:

\(\ds \sup S\) \(=\) \(\ds \sup T\)
\(\ds \leadsto \ \ \) \(\ds \sup S\) \(\le\) \(\ds \sup T\)
\(\ds \leadsto \ \ \) \(\ds \forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: s\) \(<\) \(\ds t + \epsilon\) Suprema of two Real Sets


Sufficient Condition

Let $\forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: s < t + \epsilon$.

The aim is to establish that $\sup S = \sup T$.


We have:

\(\ds \forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: s\) \(<\) \(\ds t + \epsilon\)
\(\ds \leadsto \ \ \) \(\ds \sup S\) \(\le\) \(\ds \sup T\) Suprema of two Real Sets
\(\ds \leadsto \ \ \) \(\ds \sup S\) \(\le\) \(\ds \sup T \le \sup S\) as $\sup T \le \sup S$ is true by Supremum of Subset
\(\ds \leadsto \ \ \) \(\ds \sup S\) \(=\) \(\ds \sup T\)

$\blacksquare$