Conditional Entropy of Join as Sum/Corollary 3

From ProofWiki
Jump to navigation Jump to search

Corollary to Conditional Entropy of Join as Sum

Let $\struct {\Omega, \Sigma, \Pr}$ be a probability space.

Let $\AA, \CC \subseteq \Sigma$ be finite sub-$\sigma$-algebras.


Then:

$\AA \subseteq \CC \implies \map H \AA \le \map H \CC $

where:

$\map H \cdot$ denotes the entropy


Proof

Let $\AA \subseteq \CC$.

Let $\NN := \set {\O, \Omega}$ be the trivial $\sigma$-algebra.

Then:

\(\ds \map H \AA\) \(=\) \(\ds \map H {\AA \mid \NN}\) Conditional Entropy Given Trivial $\sigma$-Algebra is Entropy
\(\ds \) \(\le\) \(\ds \map H {\CC \mid \NN}\) Conditional Entropy of Join as Sum: Corollary 2
\(\ds \) \(=\) \(\ds \map H \CC\) Conditional Entropy Given Trivial $\sigma$-Algebra is Entropy

$\blacksquare$


Sources