Congruent Numbers are not necessarily Equal

From ProofWiki
Jump to navigation Jump to search


Let $x, y, z \in \R$ be real numbers such that:

$x \equiv y \pmod z$

where $x \equiv y \pmod z$ denotes congruence modulo $z$.

Then it is not necessarily the case that $x = y$.


Proof by Counterexample:

We have that:

$11 - 5 = 6 = 3 \times 2$

and so by definition of congruence modulo $2$:

$10 \equiv 4 \pmod 2$

But $11 \ne 5$.


Also see