Conjunction and Implication
Jump to navigation
Jump to search
Theorems
Conjunction Equivalent to Negation of Implication of Negative
Formulation 1
- $p \land q \dashv \vdash \neg \paren {p \implies \neg q}$
Formulation 2
- $\vdash \paren {p \land q} \iff \paren {\neg \paren {p \implies \neg q} }$
Implication Equivalent to Negation of Conjunction with Negative
Formulation 1
- $p \implies q \dashv \vdash \neg \paren {p \land \neg q}$
Formulation 2
- $\vdash \paren {p \implies q} \iff \paren {\neg \paren {p \land \neg q} }$
Conjunction with Negative Equivalent to Negation of Implication
Formulation 1
- $p \land \neg q \dashv \vdash \neg \paren {p \implies q}$
Formulation 2
- $\vdash \paren {p \land \neg q} \iff \paren {\neg \paren {p \implies q} }$
Modus Ponendo Tollens
Formulation 1
- $\neg \left({p \land q}\right) \dashv \vdash p \implies \neg q$
Formulation 2
- $\vdash \paren {\neg \paren {p \land q} } \iff \paren {p \implies \neg q}$
Law of Excluded Middle
Note that the Modus Ponendo Tollens:
- $\neg \paren {p \land q} \dashv \vdash p \implies \neg q$
can be proved in both directions without resorting to Law of Excluded Middle.
All the others:
- $p \land q \vdash \neg \paren {p \implies \neg q}$
- $p \implies q \vdash \neg \paren {p \land \neg q}$
- $p \land \neg q \vdash \neg \paren {p \implies q}$
are not reversible in intuitionistic logic.